Microbial communities in freshwater used for hydraulic fracturing are unable to withstand the high temperatures and pressures characteristic of fractured shales

Author:

Nixon Sophie L.12ORCID,Plominsky Alvaro M.3,Hernandez-Becerra Natali2,Boothman Christopher21,Bartlett Douglas H.3

Affiliation:

1. Manchester Institute of Biotechnology, University of Manchester, Manchester, UK

2. Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK

3. Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, USA

Abstract

Natural gas is recovered from shale formations by hydraulic fracturing, a process known to create microbial ecosystems in the deep subsurface. Microbial communities that emerge in fractured shales include organisms known to degrade fracturing fluid additives and contribute to corrosion of well infrastructure. In order to limit these negative microbial processes, it is essential to constrain the source of the responsible micro-organisms. Previous studies have identified a number of potential sources, including fracturing fluids and drilling muds, yet these sources remain largely untested. Here, we apply high-pressure experimental approaches to assess whether the microbial community in synthetic fracturing fluid made from freshwater reservoir water can withstand the temperature and pressure conditions of hydraulic fracturing and the fractured shale environment. Using cell enumerations, DNA extraction and culturing, we show that the community can withstand high pressure or high temperature alone, but the combination of both is fatal. These results suggest that initial freshwater-based fracturing fluids are an unlikely source of micro-organisms in fractured shales. These findings indicate that potentially problematic lineages, such as sulfidogenic strains of Halanaerobium that have been found to dominate fractured shale microbial communities, likely derive from other input sources into the downwell environment, such as drilling muds.

Funder

Natural Environment Research Council

Publisher

Microbiology Society

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3