Functional replacement of the R region of simian immunodeficiency virus-based vectors by heterologous elements

Author:

Brandt Sabine1,Grunwald Thomas1,Lucke Susann1,Stang Alexander1,Überla Klaus1

Affiliation:

1. Department of Molecular and Medical Virology, Ruhr University Bochum, D-44780 Bochum, Germany

Abstract

Substitution of lentiviralcis-acting elements by heterologous sequences might allow the safety of lentiviral vectors to be enhanced by reducing the risk of homologous recombination and vector mobilization. Therefore, a substitution and deletion analysis of the R region of simian immunodeficiency virus (SIV)-based vectors was performed and the effect of the modifications on packaging and transfer by SIV and human immunodeficiency virus type 1 (HIV-1) particles was analysed. Deletion of the first 7 nt of R reduced vector titres by 10- to 20-fold, whilst deletion of the entire R region led to vector titres that were 1500-fold lower. Replacement of the R region of SIV-based vectors by HIV-1 or Moloney murine sarcoma virus R regions partially restored vector titres. A non-retroviral cellular sequence was also functional, although to a lesser extent. In the absence oftat, modification of the R region had only minor effects on cytoplasmic RNA stability, steady-state levels of vector RNA and packaging, consistent with the known primary function of R during reverse transcription. Although the SIV R region of SIV-based vectors could be replaced functionally by heterologous sequences, the same modifications of R led to a severe replication defect in the context of a replication-competent SIV. As SIV-based vectors containing the HIV-1 R region were transferred less efficiently by HIV-1 particles than wild-type SIV vectors, a match between R andcis-acting elements of the vector construct seems to be more important than a match between R and the Gag or Pol proteins of the vector particle.

Publisher

Microbiology Society

Subject

Virology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3