Use of community genome arrays (CGAs) to assess the effects of Acacia angustissima on rumen ecology

Author:

Krause Denis O.12,Smith Wendy J. M.2,McSweeney Christopher S.2

Affiliation:

1. Department of Animal Science, Faculty of Agricultural and Food Sciences, University of Manitoba–Winnipeg, MB, Canada R3T 2N2

2. CSIRO Livestock Industries, St Lucia, Australia

Abstract

This research developed a community genome array (CGA) to assess the effects of Acacia angustissima on rumen microbiology. A. angustissima produces non-protein amino acids as well as tannins, which may be toxic to animals, and CGA was used to assess the effects of this plant on the ecology of the rumen. CGAs were developed using a 7·5 cm×2·5 cm nylon membrane format that included up to 96 bacterial genomes. It was possible to separately hybridize large numbers of membranes at once using this mini-membrane format. Pair-wise cross-hybridization experiments were conducted to determine the degree of cross-hybridization between strains; cross-hybridization occurred between strains of the same species, but little cross-reactivity was observed among different species. CGAs were successfully used to survey the microbial communities of animals consuming an A. angustissima containing diet but quantification was not precise. To properly quantify and validate the CGA, Fibrobacter and Ruminococcus populations were independently assessed using 16S rDNA probes to extracted rRNA. The CGA detected an increase in these populations as acacia increased in the diet, which was confirmed by rRNA analysis. There was a great deal of variation among strains of the same species in how they responded to A. angustissima. However, in general Selenomonas strains tended to be resistant to the tannins in the acacia while Butyrivibrio fibrisolvens was sensitive. On the other hand some species, like streptococci, varied. Streptococcus bovis-like strains were sensitive to an increase in acacia in the diet while Streptococcus gallolyticus-like strains were resistant. Strep. gallolyticus has independently been shown to be resistant to tannins. It is concluded that there is significant variation in tannin resistance between strains of the same species. This implies that there are specific molecular mechanisms at play that are independent of the phylogenetic position of the organism.

Publisher

Microbiology Society

Subject

Microbiology

Reference50 articles.

1. Molecular biological methods for studying the gut microbiota: the EU human gut flora project;Blaut;Br J Nutr,2002

2. Differences in rDNA libraries of faecal bacteria derived from 10- and 25-cycle PCRs;Bonnet;Int J Syst Evol Microbiol,2002

3. Effect of hydrolysable and condensed tannins on growth, morphology and metabolism of Streptococcus gallolyticus(S. caprinus) and Streptococcus bovis;Brooker;Microbiology,2001

4. Streptococcus caprinus sp. nov., a tannin-resistant ruminal bacterium from feral goats;Brooker;Lett Appl Microbiol,1994

5. Effect of tannins and other secondary plant products on microbial populations and gut function;Brooker,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3