Phylogenetic analyses of the homologous transmembrane channel-forming proteins of the F0F1-ATPases of bacteria, chloroplasts and mitochondria

Author:

Blair Alan1,Ngo Linh1,Park James1,Paulsen Ian T.1,Saier Milton H.1

Affiliation:

1. Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA

Abstract

Sequences of the three integral membrane subunits (subunits a, b and c) of the F0sector of the proton-translocating F-type (F0F1-) ATPases of bacteria, chloroplasts and mitochondria have been analysed. All homologous-sequenced proteins of these subunits, comprising three distinct families, have been identified by database searches, and the homologous protein sequences have been aligned and analysed for phylogenetic relatedness. The results serve to define the relationships of the members of each of these three families of proteins, to identify regions of relative conservation, and to define relative rates of evolutionary divergence. Of these three subunits, c-subunits exhibited the slowest rate of evolutionary divergence, b-subunits exhibited the most rapid rate of evolutionary divergence, and a-subunits exhibited an intermediate rate of evolutionary divergence. The results allow definition of the relative times of occurrence of specific events during evolutionary history, such as the intragenic duplication event that gave rise to large c-subunits in eukaryotic vacuolar-type ATPases after eukaryotes diverged from archaea, and the extragenic duplication of F-type ATPase b-subunits that occurred in bluegreen bacteria before the advent of chloroplasts. The results generally show that the three F0subunits evolved as a unit from a primordial set of genes without appreciable horizontal transmission of the encoding genetic information although a few possible exceptions were noted.

Publisher

Microbiology Society

Subject

Microbiology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3