A two-plasmid system for stable, selective-pressure-independent expression of multiple extracellular proteins in mycobacteria

Author:

Harth Günter1,Masleša-Galić Saša1,Horwitz Marcus A.1

Affiliation:

1. Division of Infectious Diseases, Department of Medicine, 37-121 CHS, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-1688, USA

Abstract

Recombinant mycobacteria expressing Mycobacterium tuberculosis extracellular proteins are leading candidates for new vaccines against tuberculosis and other mycobacterial diseases, and important tools both in antimycobacterial drug development and basic research in mycobacterial pathogenesis. Recombinant mycobacteria that stably overexpress and secrete major extracellular proteins of M. tuberculosis in native form on plasmids pSMT3 and pNBV1 were previously constructed by the authors. To enhance the versatility of this plasmid-based approach for mycobacterial protein expression, the Escherichia coli/mycobacteria shuttle plasmid pGB9 was modified to accommodate mycobacterial genes expressed from their endogenous promoters. Previous studies showed that the modified plasmid, designated pGB9.2, derived from the cryptic Mycobacterium fortuitum plasmid pMF1, was present at a low copy number in both E. coli and mycobacteria, and expression of recombinant M. tuberculosis proteins was found to be at levels paralleling its copy number, that is, approximating their endogenous levels. Plasmid pGB9.2 was compatible with the shuttle vectors pSMT3 and pNBV1 and in combination with them it simultaneously expressed the M. tuberculosis 30 kDa extracellular protein FbpB. Plasmid pGB9.2 was stably maintained in the absence of selective pressure in three mycobacterial species: Mycobacterium bovis BCG, M. tuberculosis and M. smegmatis. Plasmid pGB9.2 was found to be self-transmissible between both fast- and slow-growing mycobacteria, but not from mycobacteria to E. coli or between E. coli strains. The combination of two compatible plasmids in one BCG strain allows expression of recombinant mycobacterial proteins at different levels, a potentially important factor in optimizing vaccine potency.

Publisher

Microbiology Society

Subject

Microbiology

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3