Comparative genomics of the KdgR regulon in Erwinia chrysanthemi 3937 and other gamma-proteobacteria

Author:

Rodionov Dmitry A.1,Gelfand Mikhail S.21,Hugouvieux-Cotte-Pattat Nicole3

Affiliation:

1. State Scientific Centre GosNIIGenetika, Moscow, 117545, Russia

2. Institute for Problems of Information Transmission, Russian Academy of Sciences, Bolshoy Karetny per. 19, Moscow GSP-4, 127994, Russia

3. Unité de Microbiologie et Génétique – Composante INSA, UMR CNRS-INSA-UCB 5122, bat Lwoff, 10 rue Dubois, Domaine Scientifique de la Doua, 69622 Villeurbanne Cedex, France

Abstract

In the plant-pathogenic enterobacterium Erwinia chrysanthemi, almost all known genes involved in pectin catabolism are controlled by the transcriptional regulator KdgR. In this study, the comparative genomics approach was used to analyse the KdgR regulon in completely sequenced genomes of eight enterobacteria, including Erw. chrysanthemi, and two Vibrio species. Application of a signal recognition procedure complemented by operon structure and protein sequence analysis allowed identification of new candidate genes of the KdgR regulon. Most of these genes were found to be controlled by the cAMP-receptor protein, a global regulator of catabolic genes. At the next step, regulation of these genes in Erw. chrysanthemi was experimentally verified using in vivo transcriptional fusions and an attempt was made to clarify the functional role of the predicted genes in pectin catabolism. Interestingly, it was found that the KdgR protein, previously known as a repressor, positively regulates expression of two new members of the regulon, phosphoenolpyruvate synthase gene ppsA and an adjacent gene, ydiA, of unknown function. Other predicted regulon members, namely chmX, dhfX, gntB, pykF, spiX, sotA, tpfX, yeeO and yjgK, were found to be subject to classical negative regulation by KdgR. Possible roles of newly identified members of the Erw. chrysanthemi KdgR regulon, chmX, dhfX, gntDBMNAC, spiX, tpfX, ydiA, yeeO, ygjV and yjgK, in pectin catabolism are discussed. Finally, complete reconstruction of the KdgR regulons in various gamma-proteobacteria yielded a metabolic map reflecting a globally conserved pathway for the catabolism of pectin and its derivatives with variability in transport and enzymic capabilities among species. In particular, possible non-orthologous substitutes of isomerase KduI and a new oligogalacturonide transporter in the Vibrio species were detected.

Publisher

Microbiology Society

Subject

Microbiology

Reference51 articles.

1. Gapped blast and psi-blast: a new generation of protein database search programs;Altschul;Nucleic Acids Res,1997

2. uidA antibiotic resistance cassettes for insertion mutagenesis, gene fusion and genetic constructions;Bardonnet;FEMS Microbiol Lett,1992

3. GenBank;Benson;Nucleic Acids Res,2000

4. FruR mediates catabolite activation of pyruvate kinase (pykF) gene expression inEscherichia coli;Bledig;J Bacteriol,1996

5. The oligogalacturonate-specific porin KdgM of Erwinia chrysanthemi belongs to a new porin family;Blot;J Biol Chem,2002

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3