Variation in gene expression patterns as the insect pathogen Metarhizium anisopliae adapts to different host cuticles or nutrient deprivation in vitro

Author:

Freimoser Florian M.1,Hu Gang1,Leger Raymond J. St1

Affiliation:

1. Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, MD 20742, USA

Abstract

Metarhizium anisopliaeinfects a broad range of insects by direct penetration of the host cuticle. To explore the molecular basis of this process, its gene expression responses to diverse insect cuticles were surveyed, using cDNA microarrays constructed from an expressed sequence tag (EST) clone collection of 837 genes. During growth in culture containing caterpillar cuticle (Manduca sexta),M. anisopliaeupregulated 273 genes, representing a broad spectrum of biological functions, including cuticle-degradation (e.g. proteases), amino acid/peptide transport and transcription regulation. There were also many genes of unknown function. The 287 down-regulated genes were also distinctive, and included a large set of ribosomal protein genes. The response to nutrient deprivation partially overlapped with the response toMan. sextacuticle, but unique expression patterns in response to cuticles from another caterpillar (Lymantria dispar), a cockroach (Blaberus giganteus) and a beetle (Popilla japonica) indicate that the pathogen can respond in a precise and specialized way to specific conditions. The subtilisins provided an example of a large gene family in which differences in regulation could potentially allow virulence determinants to target different hosts and stages of infection. Comparisons betweenM. anisopliaeand published data onTrichoderma reeseiandSaccharomyces cerevisiaeidentified differences in the regulation of glycolysis-related genes and citric acid cycle/oxidative phosphorylation functions. In particular,M. anisopliaehas multiple forms of several catabolic enzymes that are differentially regulated in response to sugar levels. These may increase the flexibility ofM. anisopliaeas it responds to nutritional changes in its environment.

Publisher

Microbiology Society

Subject

Microbiology

Cited by 127 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3