Novel light-regulated genes in Trichoderma atroviride: a dissection by cDNA microarrays

Author:

Rosales-Saavedra T.1,Esquivel-Naranjo E. U.21,Casas-Flores S.1,Martínez-Hernández P.21,Ibarra-Laclette E.2,Cortes-Penagos C.2,Herrera-Estrella A.21

Affiliation:

1. Departamento de Ingeniería Genética, Cinvestav Campus Guanajuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, Apartado Postal 629, CP 36500, Irapuato, Guanajuato, Mexico

2. Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Campus Guanajuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, Apartado Postal 629, CP 36500, Irapuato, Guanajuato, Mexico

Abstract

The influence of light on living organisms is critical, not only because of its importance as the main source of energy for the biosphere, but also due to its capacity to induce changes in the behaviour and morphology of nearly all forms of life. The common soil fungusTrichoderma atrovirideresponds to blue light in a synchronized manner, in time and space, by forming a ring of green conidia at what had been the colony perimeter at the time of exposure (photoconidiation). A putative complex formed by the BLR-1 and BLR-2 proteins inT. atrovirideappears to play an essential role as a sensor and transcriptional regulator in photoconidiation. Expression analyses using microarrays containing 1438 unigenes were carried out in order to identify early light response genes. It was found that 2.8 % of the genes were light responsive: 2 % induced and 0.8 % repressed. Expression analysis inblrdeletion mutants allowed the demonstration of the occurrence of two types of light responses, ablr-independent response in addition to the expectedblr-dependent one, as well as a new role of the BLR proteins in repression of transcription. Exposure ofT. atrovirideto continuous light helped to establish that the light-responsive genes are subject to photoadaptation. Finally, evidence is provided of red-light-regulated gene expression and a possible crosstalk between the blue and red light signalling pathways.

Publisher

Microbiology Society

Subject

Microbiology

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3