Untying relaxed circular DNA of hepatitis B virus by polymerase reaction provides a new option for accurate quantification and visualization of covalently closed circular DNA

Author:

Kamiya Naohiro12,Sugimoto Takahiko2,Abe-Chayama Hiromi31,Akiyama Rie31,Tsuboi Yasunori2,Mogami Akira2ORCID,Imamura Michio31ORCID,Hayes C. Nelson31,Chayama Kazuaki314

Affiliation:

1. Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan

2. Research Unit/Immunology & Inflammation, Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Kanagawa, Japan

3. Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan

4. Institute of Physical and Chemical Research (RIKEN) Center for Integrative Medical Sciences, Yokohama, Japan

Abstract

Hepatitis B virus (HBV) is a small hepatotropic DNA virus that replicates via an RNA intermediate. After entry, the virus capsid carries relaxed circular DNA (rcDNA) into the nucleus where the viral genome is converted into covalently closed circular DNA (cccDNA), which serves as the template for all viral transcripts. To monitor cccDNA levels, preprocessing methods to eliminate rcDNA have emerged for quantitative PCR, although Southern blotting is still the only method to discriminate cccDNA from other DNA intermediates. In this study, we have established a robust method for untying mature rcDNA into double stranded linear DNA using specific polymerases. Untying rcDNA provides not only an alternative method for cccDNA quantification but also a sensitive method for visualizing cccDNA. We combined this method with plasmid-safe DNase and T5 exonuclease preprocessing and revealed that accurate quantification requires cccDNA digestion by a restriction enzyme because heat stability of cccDNA increases after T5 exonuclease treatment. In digital PCR using duplex TaqMan probes, fewer than 1000 copies of cccDNA were successfully visualized as double positive spots that were distinct from single positives derived from untied rcDNA. This method was further applied to the infection model of primary hepatocytes treated with nucleoside analogues and a core protein allosteric modulator to monitor cccDNA levels. Relative quantification of cccDNA by human genome copy demonstrated the possibility of precise evaluation of cccDNA level per nucleus. These results clearly indicate that the sequential reaction from untying rcDNA is useful to investigate cccDNA fates in a small fraction of nuclei.

Funder

Japan Agency for Medical Research and Development

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3