Proteome of Geobacter sulfurreducens in the presence of U(VI)

Author:

Orellana Roberto1,Hixson Kim K.2,Murphy Sean1,Mester Tünde3,Sharma Manju L.1,Lipton Mary S.2,Lovley Derek R.1

Affiliation:

1. Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA

2. Environmental Molecular Sciences Laboratory and Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA

3. Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Kellogg Eye Center, Ann Arbor, MI 48105, USA

Abstract

Geobacter species often play an important role in the in situ bioremediation of uranium-contaminated groundwater, but little is known about how these microbes avoid uranium toxicity. To evaluate this further, the proteome of Geobacter sulfurreducens exposed to 100 µM U(VI) acetate was compared to control cells not exposed to U(VI). Of the 1363 proteins detected from these cultures, 203 proteins had higher abundance during exposure to U(VI) compared with the control cells and 148 proteins had lower abundance. U(VI)-exposed cultures expressed lower levels of proteins involved in growth, protein and amino acid biosynthesis, as well as key central metabolism enzymes as a result of the deleterious effect of U(VI) on the growth of G. sulfurreducens. In contrast, proteins involved in detoxification, such as several efflux pumps belonging to the RND (resistance–nodulation–cell division) family, and membrane protection, and other proteins, such as chaperones and proteins involved in secretion systems, were found in higher abundance in cells exposed to U(VI). Exposing G. sulfurreducens to U(VI) resulted in a higher abundance of many proteins associated with the oxidative stress response, such as superoxide dismutase and superoxide reductase. A strain in which the gene for superoxide dismutase was deleted grew more slowly than the WT strain in the presence of U(VI), but not in its absence. The results suggested that there is no specific mechanism for uranium detoxification. Rather, multiple general stress responses are induced, which presumably enable Geobacter species to tolerate high uranium concentrations.

Funder

Fulbright–CONICYT Equal Opportunities Scholarship

Office of Science (Office of Biological and Environmental Research), US Department of Energy

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3