Genomic analysis of diverse rubella virus genotypes

Author:

Zhou Yumei12,Ushijima Hiroshi1,Frey Teryl K.2

Affiliation:

1. Department of Developmental Medical Sciences, Institute of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan

2. Department of Biology, Georgia State University, Atlanta, GA, USA

Abstract

Based on the sequence of the E1 glycoprotein gene, two clades and ten genotypes ofRubella virushave been distinguished; however, genomic sequences have been determined for viruses in only two of these genotypes. In this report, genomic sequences for viruses in an additional six genotypes were determined. The genome was found to be well conserved. The viruses in all eight of these genotypes had the same number of nucleotides in each of the two open reading frames (ORFs) and the untranslated regions (UTRs) at the 5′ and 3′ ends of the genome. Only the UTR between the ORFs (the junction region) exhibited differences in length. Of the nucleotides in the genome, 78 % were invariant. The greatest observed distance between viruses in different genotypes was 8.74 % and the maximum calculated genetic distance was 14.78 substitutions in 100 sites. This degree of variability was similar among regions of the genome with two exceptions, both within the P150 non-structural protein gene: the N-terminal region that encodes the methyl/guanylyltransferase domain was less variable, whereas the hypervariable domain in the middle of the gene was more divergent. Comparative phylogenetic analysis of different regions of the genome was done, using sequences from 43 viruses of the non-structural protease (near the 5′ end of the genome), the junction region (the middle) and the E1 gene (the 3′ end). Phylogenetic segregation of sequences from these three genomic regions was similar with the exception of genotype 1B viruses, among which a recombinational event near the junction region was identified.

Publisher

Microbiology Society

Subject

Virology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3