Metabolic flux analysis of wild-type Escherichia coli and mutants deficient in pyruvate-dissimilating enzymes during the fermentative metabolism of glucuronate

Author:

Murarka Abhishek1,Clomburg James M.1,Gonzalez Ramon21

Affiliation:

1. Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA

2. Department of Bioengineering, Rice University, Houston, TX, USA

Abstract

The fermentative metabolism of d-glucuronic acid (glucuronate) in Escherichia coli was investigated with emphasis on the dissimilation of pyruvate via pyruvate formate-lyase (PFL) and pyruvate dehydrogenase (PDH). In silico and in vivo metabolic flux analysis (MFA) revealed that PFL and PDH share the dissimilation of pyruvate in wild-type MG1655. Surprisingly, it was found that PDH supports fermentative growth on glucuronate in the absence of PFL. The PDH-deficient strain (Pdh−) exhibited a slower transition into the exponential phase and a decrease in specific rates of growth and glucuronate utilization. Moreover, a significant redistribution of metabolic fluxes was found in PDH- and PFL-deficient strains. Since no role had been proposed for PDH in the fermentative metabolism of E. coli, the metabolic differences between MG1655 and Pdh− were further investigated. An increase in the oxidative pentose phosphate pathway (ox-PPP) flux was observed in response to PDH deficiency. A comparison of the ox-PPP and PDH pathways led to the hypothesis that the role of PDH is the supply of reducing equivalents. The finding that a PDH deficiency lowers the NADH : NAD+ ratio supported the proposed role of PDH. Moreover, the NADH : NAD+ ratio in a strain deficient in both PDH and the ox-PPP (Pdh−Zwf−) was even lower than that observed for Pdh−. Strain Pdh−Zwf− also exhibited a slower transition into the exponential phase and a lower growth rate than Pdh−. Finally, a transhydrogenase-deficient strain grew more slowly than wild-type but did not show the slower transition into the exponential phase characteristic of Pdh− mutants. It is proposed that PDH fulfils two metabolic functions. First, by creating the appropriate internal redox state (i.e. appropriate NADH : NAD+ ratio), PDH ensures the functioning of the glucuronate utilization pathway. Secondly, the NADH generated by PDH can be converted to NADPH by the action of transhydrogenases, thus serving as biosynthetic reducing power in the synthesis of building blocks and macromolecules.

Publisher

Microbiology Society

Subject

Microbiology

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3