Affiliation:
1. Departamento de Bioquímica y Biología Molecular, Universitat de València, and Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain
Abstract
Trehalose accumulation is a common response to several stresses in the yeast Saccharomyces cerevisiae. This metabolite protects proteins and membrane lipids from structural damage and helps cells to maintain integrity. Based on genetic studies, degradation of trehalose has been proposed as a required mechanism for growth recovery after stress, and the neutral trehalase Nth1p as the unique degradative activity involved. Here we constructed a collection of mutants for several trehalose metabolism and transport genes and analysed their growth and trehalose mobilization profiles during experiments of saline stress recovery. The behaviour of the triple Δnth1Δnth2Δath1 and quadruple Δnth1Δnth2Δath1Δagt1 mutant strains in these experiments demonstrates the participation of the three known yeast trehalases Nth1p, Nth2p and Ath1p in the mobilization of intracellular trehalose during growth recovery after saline stress, rules out the participation of the Agt1p H+-disaccharide symporter, and allows us to propose the existence of additional new mechanisms for trehalose mobilization after saline stress.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献