Genetic and functional analysis of the human immunodeficiency virus (HIV) type 1-inhibiting F12-HIVnef allele

Author:

D’Aloja Paola12,Santarcangelo Anna Claudia2,Arold Stefan3,Baur Andreas1,Federico Maurizio2

Affiliation:

1. University of Erlangen, Department of Dermatology, Erlangen, Germany2

2. Laboratory of Virology, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy1

3. Department of Biochemistry and Molecular Biology, University College London, London, UK3

Abstract

The primary human immunodeficiency virus type 1 (HIV-1) Nef mutant F12-HIVNef is characterized by three rare amino acid substitutions, G140E, V153L and E177G. It was reported previously that the expression of F12-HIVNef in the context of the highly productive NL4-3 HIV-1 strain blocks virus replication at the level of virus assembly and/or release by a mechanism depending on the presence of the CD4 intracytoplasmic tail. Here, it is reported that NL4-3 HIV-1 strains expressing F12-HIVnef alleles that were back-mutated in each amino acid substitution readily replicated in CD4+ cells. Attempting to correlate possible functional alterations with antiviral effects, both F12-HIVNef and its back mutants were tested in terms of well-characterized markers of Nef expression. Both F12-HIVNef and its G177E back mutant did not down-regulate CD4 as the consequence of a greatly reduced rate of CD4 internalization. On the other hand, F12-HIVNef as well as the E140G and L153V back mutants failed to activate the p62 Nef-associated kinase (p62NAK). Thus, only F12-HIVNef was defective in both accelerated rates of CD4 internalization and p62NAK activation, whereas at least one Nef function was restored in all of the back mutants. Infection of cells expressing Nef-resistant CD4 molecules with HIV-1 strains encoding F12-HIVNef back mutants showed that both the lack of accelerated CD4 endocytosis and an, as yet, still unidentified function are required for the F12-HIVNef inhibitory phenotype. These results provide a detailed functional analysis of the F12-HIVnef allele and support the idea that both CD4 accelerated internalization and p62NAK activation are part of the essential steps in the virus replication cycle.

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3