Rapid identification and subsequent contextualization of an outbreak of methicillin-resistant Staphylococcus aureus in a neonatal intensive care unit using nanopore sequencing

Author:

White Rhys T.1ORCID,Bakker Sarah1,Burton Megan2,Castro M. Leticia1,Couldrey Christine3,Dyet Kristin1ORCID,Eustace Alexandra1,Harland Chad3ORCID,Hutton Samantha2,Macartney-Coxson Donia1ORCID,Tarring Claire2ORCID,Velasco Charles2,Voss Emma M.43,Williamson John4,Bloomfield Max52ORCID

Affiliation:

1. Institute of Environmental Science and Research, Health Group, Porirua 5022, New Zealand

2. Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington 6021, New Zealand

3. Livestock Improvement Corporation, Research and Development, Newstead 3286, New Zealand

4. University of Otago, Department of Microbiology and Immunology, Dunedin 9016, New Zealand

5. Te Whatu Ora/Health New Zealand, Infection Prevention and Control, Capital, Coast & Hutt Valley, Wellington 6021, New Zealand

Abstract

Outbreaks of methicillin-resistant Staphylococcus aureus (MRSA) are well described in the neonatal intensive care unit (NICU) setting. Genomics has revolutionized the investigation of such outbreaks; however, to date, this has largely been completed retrospectively and has typically relied on short-read platforms. In 2022, our laboratory established a prospective genomic surveillance system using Oxford Nanopore Technologies sequencing for rapid outbreak detection. Herein, using this system, we describe the detection and control of an outbreak of sequence-type (ST)97 MRSA in our NICU. The outbreak was identified 13 days after the first MRSA-positive culture and at a point where there were only two known cases. Ward screening rapidly defined the extent of the outbreak, with six other infants found to be colonized. There was minimal transmission once the outbreak had been detected and appropriate infection control measures had been instituted; only two further ST97 cases were detected, along with three unrelated non-ST97 MRSA cases. To contextualize the outbreak, core-genome single-nucleotide variants were identified for phylogenetic analysis after de novo assembly of nanopore data. Comparisons with global (n=45) and national surveillance (n=35) ST97 genomes revealed the stepwise evolution of methicillin resistance within this ST97 subset. A distinct cluster comprising nine of the ten ST97-IVa genomes from the NICU was identified, with strains from 2020 to 2022 national surveillance serving as outgroups to this cluster. One ST97-IVa genome presumed to be part of the outbreak formed an outgroup and was retrospectively excluded. A second phylogeny was created using Illumina sequencing, which considerably reduced the branch lengths of the NICU isolates on the phylogenetic tree. However, the overall tree topology and conclusions were unchanged, with the exception of the NICU outbreak cluster, where differences in branch lengths were observed. This analysis demonstrated the ability of a nanopore-only prospective genomic surveillance system to rapidly identify and contextualize an outbreak of MRSA in a NICU.

Funder

New Zealand Ministry of Primary Industries

Ministry of Business, Innovation and Employment

Institute of Environmental Science and Research

Awanui Laboratories Wellington

Ministry of Education- New Zealand

Genomics Aotearoa

Livestock Improvement Corporation

Publisher

Microbiology Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3