Rapid molecular evolution of Spiroplasma symbionts of Drosophila

Author:

Gerth Michael12ORCID,Martinez-Montoya Humberto3ORCID,Ramirez Paulino4ORCID,Masson Florent5ORCID,Griffin Joanne S.2ORCID,Aramayo Rodolfo6ORCID,Siozios Stefanos2ORCID,Lemaitre Bruno5ORCID,Mateos Mariana7ORCID,Hurst Gregory D. D.2ORCID

Affiliation:

1. Present address: Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK

2. Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK

3. Laboratorio de Genética y Genómica Comparativa, Unidad Académica Multidisciplinaria Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, Mexico

4. Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA

5. Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (École Polytechnique Fédérale de Lausanne), Lausanne, Switzerland

6. Department of Biology, Texas A&M University, College Station, TX, USA

7. Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA

Abstract

Spiroplasma is a genus of Mollicutes whose members include plant pathogens, insect pathogens and endosymbionts of animals. Spiroplasma phenotypes have been repeatedly observed to be spontaneously lost in Drosophila cultures, and several studies have documented a high genomic turnover in Spiroplasma symbionts and plant pathogens. These observations suggest that Spiroplasma evolves quickly in comparison to other insect symbionts. Here, we systematically assess evolutionary rates and patterns of Spiroplasma poulsonii , a natural symbiont of Drosophila. We analysed genomic evolution of sHy within flies, and sMel within in vitro culture over several years. We observed that S. poulsonii substitution rates are among the highest reported for any bacteria, and around two orders of magnitude higher compared with other inherited arthropod endosymbionts. The absence of mismatch repair loci mutS and mutL is conserved across Spiroplasma , and likely contributes to elevated substitution rates. Further, the closely related strains sMel and sHy (>99.5 % sequence identity in shared loci) show extensive structural genomic differences, which potentially indicates a higher degree of host adaptation in sHy, a protective symbiont of Drosophila hydei. Finally, comparison across diverse Spiroplasma lineages confirms previous reports of dynamic evolution of toxins, and identifies loci similar to the male-killing toxin Spaid in several Spiroplasma lineages and other endosymbionts. Overall, our results highlight the peculiar nature of Spiroplasma genome evolution, which may explain unusual features of its evolutionary ecology.

Funder

H2020 Marie Skłodowska-Curie Actions

European Molecular Biology Organization

Publisher

Microbiology Society

Subject

General Medicine

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3