Transcriptional landscape of Burkholderia pseudomallei cultured under environmental and clinical conditions

Author:

Kong Cin12ORCID,Wong Rui-Rui32ORCID,Ghazali Ahmad-Kamal2,Hara Yuka32,Tengku Aziz Tengku Nurfarhana42,Nathan Sheila2

Affiliation:

1. Present address: Division of Biomedical Sciences, University of Nottingham Malaysia, Selangor, Semenyih, Malaysia

2. Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia

3. Faculty of Health and Life Sciences, Inti International University, Nilai, Negeri Sembilan, Malaysia

4. Present address: Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK

Abstract

Burkholderia pseudomallei , a Gram-negative pathogen, is the causative agent of melioidosis in humans. This bacterium can be isolated from the soil, stagnant and salt-water bodies, and human and animal clinical specimens. While extensive studies have contributed to our understanding of B. pseudomallei pathogenesis, little is known about how a harmless soil bacterium adapts when it shifts to a human host and exhibits its virulence. The bacterium’s large genome encodes an array of factors that support the pathogen’s ability to survive under stressful conditions, including the host’s internal milieu. In this study, we performed comparative transcriptome analysis of B. pseudomallei cultured in human plasma versus soil extract media to provide insights into B. pseudomallei gene expression that governs bacterial adaptation and infectivity in the host. A total of 455 genes were differentially regulated; genes upregulated in B. pseudomallei grown in human plasma are involved in energy metabolism and cellular processes, whilst the downregulated genes mostly include fatty acid and phospholipid metabolism, amino acid biosynthesis and regulatory function proteins. Further analysis identified a significant upregulation of biofilm-related genes in plasma, which was validated using the biofilm-forming assay and scanning electron microscopy. In addition, genes encoding known virulence factors such as capsular polysaccharide and flagella were also overexpressed, suggesting an overall enhancement of B. pseudomallei virulence potential when present in human plasma. This ex vivo gene expression profile provides comprehensive information on B. pseudomallei ’s adaptation when shifted from the environment to the host. The induction of biofilm formation under host conditions may explain the difficulty in treating septic melioidosis.

Funder

Universiti Kebangsaan Malaysia

Kementerian Pendidikan Malaysia

Publisher

Microbiology Society

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3