Genomic insights into Enterococcus faecium isolates from marine bivalves highlight One Health concerns and healthcare linkages

Author:

Heim Amalie von Barner Tvedegaard1,Janice Jessin2,Bjørnholt Jørgen Vildershøj34,Lunestad Bjørn Tore1,Hegstad Kristin52,Svanevik Cecilie Smith1ORCID

Affiliation:

1. Institute of Marine Research (IMR), Post box 1870, Nordnes, Bergen, Norway

2. Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, University Hospital of North Norway (UNN), N-9038 Tromsø, Norway

3. Institute of Clinical Medicine, University of Oslo (UiO), Oslo, Norway. PO box 1171 - Blindern, 0318 Oslo, Norway

4. Department of Clinical Microbiology, Oslo University Hospital, Oslo, Norway. PO box 4950 Nydalen 0424 Oslo, Norway

5. Research Group for Host-Microbe Interactions, UiT the Arctic University of Norway, PO box 6050 Langnes, N-9037 Tromsø, Norway

Abstract

Enterococci, especially Enterococcus faecium , are one of today’s leading causes of multidrug-resistant infections in hospital settings. The marine environment may harbour enterococci, but its role as an evolutionary niche and as a vector for the spread of enterococci is sparsely investigated. Hence, by applying enterococci in bivalves as a sentinel tool, this study aimed to describe the prevalence of enterocooci along the Norwegian coast and in addition the phylogeny of E. faecium in particular. Enterococci in batch samples of marine bivalves, harvested from 86 different locations, were quantitatively examined by a culture-dependent most probable number (MPN) method. Isolates were identified by MALDI-TOF-MS prior to antimicrobial susceptibility testing by broth microdilution. In-detail analyses of a representative selection of E. faecium isolates (n=148) were done by Illumina whole-genome sequencing, and assembled genomes were compared to closed E. faecium genomes in the public databases and to genomes from commensal and clinical isolates from Norway. Diversity among E. faecium within the same batch sample of bivalves was also explored. Enterococci were detected in 287 of the 471 examined bivalve samples, but in low concentrations with a median value of <18 MPN /100 g. From positive samples, 479 isolates of enterococci were identified belonging to ten different species, where E. faecium (n=247), Enterococcus hirae (n=114) and Enterococcus faecalis (n=66) were most frequently found. Resistance towards one or more antimicrobial agents was observed in 197 isolates (41 %), none of the isolates showed acquired resistance to vancomycin or linezolid. Phylogenetic analyses revealed high diversity among the E. faecium isolates and showed that the marine niche is dominated by strains from the non-clinical setting belonging to clade A2 (n=85) and B ( E. lactis ) (n=60). Only three isolates belonged to the hospital-associated clade A1 (ST80 and ST117). Two of these clustered with one isolate from a hospitalized patient and one from a non-hospitalized person. This study demonstrated a high prevalence, but low concentrations of enterococci in bivalves, and low levels of antimicrobial resistance. E. faecium genomes showed high population diversity and that very few E. faecium isolates in bivalves may have arisen from the human healthcare system. A systematic surveillance of target micro-organisms applying methods examining multiple isolates from the same bivalve sample provides important data to assess the enterococcal phylogeny, antimicrobial resistance and the level of faecal pollution in the marine environment.

Publisher

Microbiology Society

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3