Identification of non-fermenting Gram-negative bacteria of clinical importance by an oligonucleotide array

Author:

Su Siou Cing1,Vaneechoutte Mario2,Dijkshoorn Lenie3,Wei Yu Fang1,Chen Ya Lei4,Chang Tsung Chain1

Affiliation:

1. Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC

2. Laboratory Bacteriology Research (LBR), Department of Clinical Chemistry, Microbiology and Immunology, Blok A, Ghent University Hospital, Ghent, Belgium

3. Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands

4. Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan, ROC

Abstract

Many species of non-fermenting Gram-negative bacilli (non-fermenters) are important opportunistic and nosocomial pathogens. Identification of most species of non-fermenters by phenotypic characteristics can be difficult. In this study, an oligonucleotide array was developed to identify 38 species of clinically relevant non-fermenters. The method consisted of PCR-based amplification of 16S–23S rRNA gene intergenic spacer (ITS) regions using bacterial universal primers, followed by hybridization of the digoxigenin-labelled PCR products with oligonucleotide probes immobilized on a nylon membrane. A total of 398 strains, comprising 276 target strains (i.e. strains belonging to the 38 species to be identified) and 122 non-target strains (i.e. strains not included in the array), were analysed by the array. Four target strains (three reference strains and one clinical isolate) produced discrepant identification by array hybridization. Three of the four discordant strains were found to be correctly identified by the array, as confirmed by sequencing of the ITS and 16S rRNA genes, with the remaining one being an unidentified species. The sensitivity and specificity of the array for identification of non-fermenters were 100 and 96.7 %, respectively. In summary, the oligonucleotide array described here offers a very reliable method for identification of clinically relevant non-fermenters, with results being available within one working day.

Publisher

Microbiology Society

Subject

Microbiology (medical),General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3