High rate of viral evolution in the capsid protein of porcine parvovirus

Author:

Streck André Felipe1,Bonatto Sandro Luis2,Homeier Timo1,Souza Carine Kunzler3,Gonçalves Karla Rathje3,Gava Danielle3,Canal Cláudio Wageck3,Truyen Uwe1

Affiliation:

1. Institute for Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany

2. Laboratório de Biologia Genômica e Molecular, Pontifícia Universidade Católica, Av. Ipiranga 6681, Prédio12, bloco C, sala 172, 90619-900 Porto Alegre, Brazil

3. Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Prédio 42.602, CEP 91540-000, Porto Alegre, Brazil

Abstract

In recent years, it has been shown that some parvoviruses exhibit high substitution rates, close to those of RNA viruses. In order to monitor and determine new mutations in porcine parvovirus (PPV), recent PPV field isolates from Austria, Brazil, Germany and Switzerland were sequenced and analysed. These samples, together with sequences retrieved from GenBank, were included in three datasets, consisting of the complete NS1 and VP1 genes and a partial VP1 gene. For each dataset, the nucleotide substitution rate and the molecular clock were determined. Analysis of the PPV field isolates revealed that a recently described amino acid substitution, S436T, appeared to be common in the VP2 protein in the Austrian, Brazilian and German virus populations. Furthermore, new amino acid substitutions were identified, located mainly in the viral capsid loops. By inferring the evolutionary dynamics of the PPV sequences, nucleotide substitution rates of approximately 10−5 substitutions per site per year for the non-structural protein gene and 10−4 substitutions per site per year for the capsid protein gene (for both viral protein datasets) were found. The latter rate is similar to those commonly found in RNA viruses. An association of the phylogenetic tree with the molecular clock analysis revealed that the mutations on which the divergence for both capsid proteins was based occurred in the past 30 years. Based on these findings, it was concluded that PPV variants are continuously evolving and that vaccines, which are based mainly on strains isolated about 30 years ago, should perhaps be updated.

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3