Author:
Kadri Kheireddin,Ben Abdallah Abir,Ballut Sébastien
Abstract
This chapter explores the optimization of type 4 pressure vessels used for hydrogen storage, focusing on carbon fiber-reinforced composites produced through filament winding. Many studies delve into the intricacies of the winding process to enhance the structural integrity of the vessels. Progressive failure analysis is employed to identify potential weak points and failure modes, guiding the development of optimal designs for improved safety and performance. Additionally, the chapter highlights the importance of considering recycling strategies in the design phase to address environmental concerns associated with composite materials. The findings contribute to advancing sustainable practices in the production and life cycle management of hydrogen pressure vessels.
Reference46 articles.
1. Pellow MA, Emmott CJ, Barnhart CJ, Benson SM. Hydrogen or batteries for grid storage? A net energy analysis. Energy and Environmental Science. 2015;:1938-1952. DOI: 10.1039/c4ee04041d
2. Villalonga S, Mathis H, Magnier C. Avancées technologiques pour les réservoirs de véhicules électriques à hydrogène, matériaux et procédés: Un savoirfaire spécifique. In: Chocs Revue Scientifique Et Technique De La Direction Des Applications Militaires. Vol. 51. Villeneuve-Saint-George; 2021. pp. 37-43. Available from:
3. Makridis SS. Hydrogen storage and compression. In: Carriveau R, Ting DS-K, editors. Methane and Hydrogen for Energy Storage. 1st ed. IET Digital Library; 2016. pp. 1-28. DOI: 10.1049/PBPO101E_ch1
4. Uetsuji Y, Yasuda S, Teramoto Y. Effect of fibre aspect ratio and aggregation on nonlinear material property of random cellulose reinforced composites: A multiscale computational study. Composite Structures. 2022;:116201. DOI: 10.1016/j.compstruct.2022.116201
5. Cesano F, Uddin MJ, Lozano K, Zanetti M, Scarano D. All-carbon conductors for electronic and electrical wiring applications. Frontiers in Materials. 2020;:219. DOI: 10.3389/fmats.2020.00219