Enhanced Cross-Dock Productivity: Combining Self-Driving Vehicles with Forklifts

Author:

Natarajan Saravanan,H. Bookbinder James

Abstract

A cross-dock (CD) in a supply chain avoids storing goods that would be picked for orders soon after. Vehicles inbound to the CD are unloaded and their contents are re-sorted. Appropriate items are then loaded within a short time on outbound vehicles for shipment to customers. The CD material handling operations of unloading, sorting and loading are typically done “manually”, by forklifts with human operators. In this chapter, we consider the replacement of some or many forklifts by “Self-Driving Vehicles” (SDV). Can the resulting semi-automated material handling system attain the same or greater productivity as the fully manual system? At what cost (per unit of output)? We develop simulation models of two CDs, one purely manual and the other containing a mixture of forklifts and SDVs. Several CD performance measures are defined and estimated via simulation. For each CD, response surface methodology is employed to determine a near-optimal set of material handling equipment, when that CD is operated at a specified performance level.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3