Lactic Acid Production from Lignocellulosic Biomass

Author:

Gezae Daful Asfaw,Loridon Marie,R. Chandraratne Meegalla

Abstract

This chapter presents bio-based lactic acid production process from lignocellulosic biomass. Bio-based chemicals can replace the chemicals that we usually get from petroleum-based resources, and they are used to produce cleaners, solvents, adhesives, paints, plastics, textiles, and many other products. Lactic acid is one of such candidates of bio-based chemicals with important applications in various industrial sectors such as the chemical, pharmaceutical, food, and cosmetics industries, where its demand is steadily increasing. It is also an essential building block for numerous commodity and intermediate-biobased chemicals making it as a suitable alternative to their fossil-derived counterparts. The bioconversion process of transforming lignocellulosic biomass into lactic acid consists of four primary stages. Initially, pretreatment is performed to enable the utilization of all C5 and C6 sugars by the selected microorganism. These sugars are then hydrolyzed and fermented by a suitable microorganism to produce either L- or D-lactic acid, depending on the desired stereochemistry. Finally, the lactic acid is separated and purified from the fermentation broth to obtain a purified product. The promising method for the industrial production of bio-based lactic acid will be of continuous simultaneous saccharification and fermentation in a gypsum-free process using Mg(OH)2 as neutralizer, followed by reactive distillation for purified lactic acid production. The cradle-to-gate life cycle assessment model for the biobased lactic acid production process indicated that the about 80–99% of the environmental burdens of most of the environmental impact categories can be reduced compared with its equivalent fossil-based lactic acid, making biobased lactic acid environmentally superior to the fossil-based lactic acid.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3