An Application-Based Study on Electromagnetic Absorber Using Metamaterial

Author:

Agrawal Alkesh

Abstract

In recent years, metamaterials (MMs) have attracted researchers due to their geometrical and structural uniqueness that make these materials to absorb, block, and enhance electromagnetic (EM) waves, which is not possible with conventional materials found in nature. These artificially engineered materials derive the EM properties (effective values of permittivity ε∼eff and permeability μ∼eff less than zero) from the shape, size, orientation, and periodicity of unit cells rather inheriting those from material composition. The study on MMs has been diversified from the radio frequency range to the optical frequency range, with potential applications in realization of novel devices such as perfect lenses, EM, and MM based microwave patch antennas. For the past few years, the concept of MMs has been widely used to develop and design metamaterial perfect absorbers (MPAs). The proposed chapter mainly focuses on the classification of materials on the basis of permittivity and permeability; MPAs; applications of MPAs; experimental demonstrations of first single-band MPAs in microwave, THz, mid-IR and near IR regimes; conditions for complete absorption of EM waves; MPA as perfectly matched layer (PML); attenuation mechanism of EM waves inside the MPA; calculation of MM parameters; measurement and testing process, followed by a case study on multi-band MPA.

Publisher

IntechOpen

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Incident angle insensitive dual-band epsilon-shaped metamaterial absorber for K-band and Ka-band applications;2024 3rd International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE);2024-04-25

2. S-shaped Metamaterial Absorber for K-band Applications;2023 International Conference on Electrical, Computer and Communication Engineering (ECCE);2023-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3