Magnetic Field Application to Increase Yield of Microalgal Biomass in Biofuel Production

Author:

Oliveira Santos Lucielen,Garcia Pereira Silva Pedro,Silva Costa Sharlene,Blumberg Machado Taiele

Abstract

Use of fuels from non-renewable sources has currently been considered unsustainable due to the exhaustion of supplies and environmental impacts caused by them. Climate change has concerned and triggered environmental policies that favor research on clean and renewable energy sources. Thus, production of third generation biofuels is a promising path in the biofuel industry. To yield this type of biofuels, microalgae should be highlighted because this raw material contains important biomolecules, such as carbohydrates and lipids. Technological approaches have been developed to improve microalgal cultivation under ecological conditions, such as light intensity, temperature, pH and concentrations of micro and macronutrients. Thus, magnetic field application to microalgal cultivation has become a viable alternative to obtain high yields of biomass concentration and accumulation of carbohydrates and lipids.

Publisher

IntechOpen

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automation control system of an equipment for ELF stimulated phototrophic microalgae production;2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA);2024-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3