Redox Signaling is Essential for Insulin Secretion

Author:

Ježek Petr,Holendová Blanka,Jabůrek Martin,Tauber Jan,Dlasková Andrea,Plecitá-Hlavatá Lydie

Abstract

In this review, we place redox signaling in pancreatic β-cells to the context with signaling pathways leading to insulin secretion, acting for example upon the action of incretins (GLP-1, GIP) and the metabotropic receptor GPR40. Besides a brief description of ion channel participation in depolarization/repolarization of the plasma membrane, we emphasize a prominent role of the elevated glucose level in pancreatic β-cells during glucose-stimulated insulin secretion (GSIS). We focus on our recent findings, which revealed that for GSIS, not only elevated ATP synthesis is required, but also fundamental redox signaling originating from the NADPH oxidase 4- (NOX4-) mediated H2O2 production. We hypothesized that the closing of the ATP-sensitive K+ channel (KATP) is only possible when both ATP plus H2O2 are elevated in INS-1E cells. KATP alone or with synergic channels provides an element of logical sum, integrating both metabolic plus redox homeostasis. This is also valid for other secretagogues, such as branched chain ketoacids (BCKAs); and partly for fatty acids (FAs). Branched chain aminoacids, leucine, valine and isoleucine, after being converted to BCKAs are metabolized by a series of reactions resembling β-oxidation of FAs. This increases superoxide formation in mitochondria, including its portion elevated due to the function of electron transfer flavoprotein ubiquinone oxidoreductase (ETF:QOR). After superoxide conversion to H2O2 the oxidation of BCKAs provides the mitochondrial redox signaling extending up to the plasma membrane to induce its depolarization together with the elevated ATP. In contrast, experimental FA-stimulated insulin secretion in the presence of non-stimulating glucose concentrations is predominantly mediated by GPR40, for which intramitochondrial redox signaling activates phospholipase iPLA2γ, cleaving free FAs from mitochondrial membranes, which diffuse to the plasma membrane and largely amplify the GPR40 response. These events are concomitant to the insulin release due to the metabolic component. Hypothetically, redox signaling may proceed by simple H2O2 diffusion or via an SH-relay enabled by peroxiredoxins to target proteins. However, these aspects have yet to be elucidated.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3