Whole-Body Vibration Approaches in Neurological Disorders

Author:

Bernardo-Filho Mario,da Cunha de Sá-Caputo Danúbia,Seixas Adérito,Taiar Redha

Abstract

Bipedalism in humans is associated with an upright spine, however, this condition is not found in other animals with that skill. This may have favored the ability to harness the influence of the gravitational forces on the body. Furthermore, it is suggested that human feet have evolved to facilitate bipedal locomotion, losing an opposable digit that grasped branches in favor of a longitudinal arch that stiffens the foot and aids bipedal gait. Gait is a repetition of sequences of body segments to move the body forward while maintaining balance. The bipedal gait favors the contact of the feet of the individual with the floor. As a result, the mechanical vibration (MV) generated during walking, running or other activity with the feet are, normally, are added to the body. In these various situations, the forces would induce the production of MV with consequent transmission to the whole body of the individual and there is the generation of whole-body vibration (WBV) exercise naturally. However, when a person has a disability, this normal addition of the MV to body does not occur. This also happens with the sedentary or bedridden individual due to illness. In this case, there are the MV yielded in vibrating platforms. The exposure of the individual to the WBV leads to physiological responses at musculoskeletal, neurological, endocrinological, and vascular levels. Considering the state of the art of this theme and the previously cited scientific information, it is plausible to assume that WBV could be a useful tool to be used on the management of individuals with neurological conditions, such as in Parkinson’s disease, stroke, cerebral palsy, multiple sclerosis, spinal cord injuries, spinocerebellar ataxia and Duchenne muscular dystrophy, and neuropathy (diabetes- and chemotherapy-related), among others. Indeed, improvements due to the WBV have been described regarding motor, and other impairments, in patients with neurological conditions, and these approaches will be presented in this chapter.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3