Electrochemical Applications for the Antioxidant Sensing in Food Samples Such as Citrus and Its Derivatives, Soft Drinks, Supplementary Food and Nutrients

Author:

Demir Ersin,Silah Hülya,Aydogdu Nida

Abstract

Although there are many definitions of antioxidants, the most general description; antioxidants are carried a phenolic function in their structure and prevent the formation of free radicals or intercept from damage to the cell by scavenging existing radicals. Moreover, they are one of the most effective substances that contain essential nutrients for healthy individuals. The importance of these antioxidants, which have an incredible effect on the body and increase the body’s resistance, is increasing day by day for healthy individuals. Numerous studies have been carried out for antioxidants with excellent properties and however new, reliable, selective, sensitive and green analytical methods are sought for their determination at trace levels in food samples. Along with the latest developments, electrochemical methods are of great interest in the world of science because they are fast, reliable, sensitive and environmentally friendly. Electrochemical methods have been frequently applied to analyze antioxidant capacity in many nutrients samples found in different forms such as solid, liquid without any pretreatment applications in the last decade. Furthermore, these methods are preferred because of the short analysis time, the ability to lower detection limits, reduction in a solvent, high sensitivity, portability, low sample consumption, wide working range, and more economical than existing other traditional analytical methods. The antioxidant sensing applications by modern electrochemical methods such as cyclic, square wave, differential pulse, and combined with stripping voltammetric techniques were used to deduce antioxidant capacity (AC) in critical nutrients. Moreover, this chapter includes a description of the classification of electrochemical methods according to the working electrode type, dynamic working range, limit of determination (LOD), limit of quantification (LOQ), sample type, and using standard analyte and so forth for each voltammetric methods. While many articles applied for the determination of antioxidant sensing by electrochemistry have gained momentum in the last two decades, we focused on the studies conducted over the last 4 years in this chapter.

Publisher

IntechOpen

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3