Removal of Microcystins from Drinking Water by Electrocoagulation: Upscaling, Challenges, and Prospects

Author:

Opoku-Duah Stephen,Johnson Dennis,Blair Dan,Dimick Jeff

Abstract

Microcystins (MCs) belong to a family of stable monocyclic heptapeptide compounds responsible for hazardous toxins in drinking water. Although several methods have been applied to remove MCs from drinking water (e.g., activated carbon filtration, ion exchange resins, high-pressure membranes, and electrochemistry), upscaling laboratory experiments to benefit municipal water treatment is still a major challenge. This chapter is a follow-up study designed to test three electrocoagulation (EC) techniques for decomposing MC by UV-ozone purification (laboratory), electrocoagulation (field unit), and coupled UV-ozone-electrocoagulation (municipal treatment). The chemistry and efficiency of the treatments were first examined followed by comparison with activated carbon filtration. Electrocoagulation outperformed activated carbon filtration by nearly 40%. When the laboratory treatments were evaluated at the municipal scale, effectiveness of the technique deteriorated by 10–20% because of UV pulse dissipation, vapor-ion plasma under-functioning, and limitations of polymer fiber filters. We confirmed previously published studies that pollutant coagulation and MC decomposition are affected by physicochemical factors such as radiation pulse density, electrical polarity, pH, and temperature dynamics. The results have relevant applications in wastewater treatment and chemical recycling.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3