Author:
Mogale Ntebogeng,Matizamhuka Wallace,Cobbinah Prince
Abstract
This research paper summarises the practical relevance of additive manufacturing with particular attention to the latest laser powder bed fusion (L-PBF) technology. L-PBF is a promising processing technique, integrating intelligent and advanced manufacturing systems for aerospace gas turbine components. Some of the added benefits of implementing such technologies compared to traditional processing methods include the freedom to customise high complexity components and rapid prototyping. Titanium aluminide (TiAl) alloys used in harsh environmental settings of turbomachinery, such as low-pressure turbine blades, have gained much interest. TiAl alloys are deemed by researchers as replacement candidates for the heavier Ni-based superalloys due to attractive properties like high strength, creep resistance, excellent resistance to corrosion and wear at elevated temperatures. Several conventional processing technologies such as ingot metallurgy, casting, and solid-state powder sintering can also be utilised to manufacture TiAl alloys employed in high-temperature applications. This chapter focuses on compositional variations, microstructure, and processing of TiAl alloys via L-PBF. Afterward, the hot corrosion aspects of TiAl alloys, including classification, characteristics, mechanisms and preventative measures, are discussed. Oxidation behaviour, kinetics and prevention control measures such as surface and alloy modifications of TiAl alloys at high temperature are assessed. Development trends for improving the hot corrosion and oxidation resistance of TiAl alloys possibly affecting future use of TiAl alloys are identified.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献