Challenges in Controlling Vibriosis in Shrimp Farms

Author:

Chellapandian Hethesh,Sivakamavalli Jeyachandran,Vijay Anand A.,Balasubramanian Balamuralikrishnan

Abstract

Recently the shrimp farming has blooming as a crucial counterpart in the aquaculture industry which contribute the remarkable role in sea food production as well economy of the country. However, this could be fluctuated every year through several circumstances such as unfavorable (Poor water and soil quality) environmental factors. The environmental factors includes disease causing bacterial pathogens in the soil and water which causes the bacterial diseases in the aquatic animals, like this hectic problems are prevented through bioaugmentation strategies. The pond environment plays a vital role in determining the healthy culture system, but there is high risk for manipulation by bacterial community which takes care of waste generated in the system through in situ bioremediation. Due to the impact of rapidly growing bacterial diseases of shrimps throughout the world, numerous studies have been carried out to find immunostimulants, immunomodulators and biotic component that can be used against vibrio causing pathogens, and can also be used as an alternative for antibiotics. Recent research focus towards the marine resources such as microalgae, seaweed, live feeds (like artemia, copepods, rotifers), bacteriophage, and probiotics have been found to have higher potential in reducing vibriosis. Eco-based shrimp farming includes green water technology, phage therapy bio-floc technology (BFT) and integrated multi-trophic aquaculture (IMTA), these methods hold a promising alternative to antibiotics in the near future. Bacterial diseases caused by vibrios have been reported in penaeid shrimp culture systems implicating at least 14 species and they are Vibrio harveyi, V. splendidus, V. parahaemolyticus, V. alginolyticus, V. anguillarum, V. vulnificuslogei etc.

Publisher

IntechOpen

Reference15 articles.

1. Jeyachandran S, Park K, Kwak I-S. Bacterial Disease Control Methods in Shrimp Farming Sector. Yeosu 59626, South Korea: Fisheries Science Institute, Chonnam National University

2. Olafsen. Interaction between fish larvae and bacteria in marine aquaculture. 2001

3. Lo C-F, Lee C-T, et al. The opportunistic marine pathogen Vibrio parahaemolyticus becomes virulent by acquiring a plasmid that expresses a deadly toxin. 2015

4. Chen Y-Y, Chen J-C, Tseng K-C, Lin Y-C, Huang C-L. Activation of Immunity, Immune Response, Antioxidant Ability, and Resistance against Vibrio alginolyticus in White Shrimp Litopenaeus vannamei Decrease under Long-term Culture at Low pH. Keelung 202, Taiwan, ROC: Department of Aquaculture, National Taiwan Ocean University; 2015

5. Chandrakala N, Priya S. Vibriosis in Shrimp Aquaculture A Review. Thanjavur, Tamilnadu, India: PG & Research Department of Zoology, Kundhavai Naacchiyaar Govt Arts College For Women(A); 2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3