Introduction to Monitoring of Bridge Infrastructure Using Soft Computing Techniques

Author:

Gordan Meisam,Sabbagh-Yazdi Saeed-Reza,Ghaedi Khaled,P. Thambiratnam David,Ismail Zubaidah

Abstract

More than a billion structures exist on our planet comprising a million bridges. A number of these infrastructures are near to or have already exceeded their design life and maintaining their health condition is an engineering optimization problem. Besides, these assets are damage-prone during their service life. This is due to the fact that different external loads induced by the environmental effects, overloading, blast loads, wind excitations, floods, earthquakes, and other natural disasters can disturb the serviceability and integrity of these structures. To overcome such bottlenecks, structural health monitoring (SHM) systems have been used to guarantee the safe functioning of structures to make satisfactory decisions on structural maintenance, repair, and rehabilitation. However, conventional SHM approaches such as virtual inspections cannot be used for structural continuous monitoring, real-time and online assessment. Therefore, soft computing techniques can be significantly used to mitigate the aforesaid concerns by handling the qualitative analysis of the complex real world behavior. This chapter aims to introduce the optimized SHM-based soft computing techniques of bridge structures through artificial intelligence and machine learning algorithms in order to illustrate the performance of advanced bridge monitoring approaches, which are required to maintain the health condition of infrastructures as well as to protect human lives.

Publisher

IntechOpen

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Soft computing algorithms for infrastructure monitoring: preliminary results of PROION project;Ninth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2023);2023-09-21

2. Marine Robotics 4.0: Present and Future of Real-Time Detection Techniques for Underwater Objects;Artificial Intelligence;2023-02-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3