Adaptive Filter as Efficient Tool for Data Assimilation under Uncertainties

Author:

Son Hoang Hong,Baraille Remy

Abstract

In this contribution, the problem of data assimilation as state estimation for dynamical systems under uncertainties is addressed. This emphasize is put on high-dimensional systems context. Major difficulties in the design of data assimilation algorithms is a concern for computational resources (computational power and memory) and uncertainties (system parameters, statistics of model, and observational errors). The idea of the adaptive filter will be given in detail to see how it is possible to overcome uncertainties as well as to explain the main principle and tools for implementation of the adaptive filter for complex dynamical systems. Simple numerical examples are given to illustrate the principal differences of the AF with the Kalman filter and other methods. The simulation results are presented to compare the performance of the adaptive filter with the Kalman filter.

Publisher

IntechOpen

Reference23 articles.

1. Kalman REA. New approach to linear filtering and prediction problems. Journal of Basic Engineering. 1960;82:35-45. DOI: 10.1115/1.3662552

2. Kailath T, Sayed AH, Hassibi B. Linear Estimation. NJ, Upper Saddle River: Prentice-Hall; 2000

3. Liptser RS, Shiryaev AN. Statistics of Random Processes—I. General Theory. Berlin and Heidelberg: Springer-Verlag; 2001

4. Sayed AH. Fundamentals of Adaptive Filtering. NJ: Wiley; 2003

5. Kucera V. The discrete Riccati equation of optimal control. Kybernetika. 1972;8(5):430-447

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3