Author:
Baláž Vladimír,Visnyai Tomáš
Abstract
Let n > 1 be an integer with its canonical representation, n = p 1 α 1 p 2 α 2 ⋯ p k α k . Put H n = max α 1 … α k , h n = min α 1 … α k , ω n = k , Ω n = α 1 + ⋯ + α k , f n = ∏ d ∣ n d and f ∗ n = f n n . Many authors deal with the statistical convergence of these arithmetical functions. For instance, the notion of normal order is defined by means of statistical convergence. The statistical convergence is equivalent with I d –convergence, where I d is the ideal of all subsets of positive integers having the asymptotic density zero. In this part, we will study I –convergence of the well-known arithmetical functions, where I = I c q = A ⊂ N : ∑ a ∈ A a − q < + ∞ is an admissible ideal on N such that for q ∈ 0 1 we have I c q ⊊ I d , thus I c q –convergence is stronger than the statistical convergence ( I d –convergence).
Reference48 articles.
1. Fast H. Sur la convergence statistique. Colloquia Mathematica. 1951;2(3–4):241-244
2. Schoenberg IJ. The Integrability of certain functions and related Summability methods. American Mathematical Monthly. 1959;66(5):361-375
3. Kostyrko P, Wilczyński W, Šalát T. I –convergence. Real Analysis Exchange. Bratislava; 2000;26(2):669-686
4. Bourbaki N. Éléments de mathématique: Topologie générale. In: Livre III, (Russian translation) Obščaja topologija. Moskow, Nauka: Osnovnye struktury; 1968
5. Baláž V, Strauch O, Šalát T. Remarks on several types of convergence of bounded sequences. Acta Mathematica Universitatis Ostraviensis. 2006;14(1):3-12