Aerosol Spray Pyrolysis Synthesis of Doped LiNi0.5Mn1.5O4 Cathode Materials for Next Generation Lithium-Ion Batteries

Author:

Ganas George,Karagiannakis George,Eguia-Barrio Aitor,Bengoechea Miguel,de Meatza Iratxe,Kastrinaki Georgia

Abstract

The autonomy of next generation Electric Vehicles relies on the development of high energy density automotive batteries. LiMn1.5Ni0.5O4 (spinel structure) is a promising active cathode material in terms of charge rate capability, theoretical capacity, cost and sustainability being a cobalt-free material. In the current study pristine and doped (Fe, Al, Mg) LiMn1.5Ni0.5O4 particles were synthesized by an Aerosol Spray Pyrolysis pilot scale unit in a production rate of 100 gr. h−1 and were evaluated for their electrochemical activity in Half Coin Cell form. The doped particles were characterized in terms of their surface area, particle size distribution, crystallite size, morphology and ion insertion of the doping element into the LiNi0.5Mn1.5O4 lattice by Raman spectroscopy. The mixed oxide particles had homogeneous composition which is an inert characteristic of aerosol spray pyrolysis synthesis. The electrochemical activity of the material is attributed both to the nanoscale structure, by successful dopant ion insertion into the spinel lattice as well as to optimization of carbon and spinel particle interface contact in the microscale for increase of electrode conductivity.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3