Bayesian Inference as a Tool to Optimize Spectral Acquisition in Scattering Experiments

Author:

De Francesco Alessio,Scaccia Luisa,Bohem Martin,Cunsolo Alessandro

Abstract

Nowadays, an increasing number of scattering measurements rely on the use of large-scale research facilities, which is usually granted after highly competitive peer-reviewing and typically for short-time lapses. The optimal use of the allocated time requires rigorous estimates on the reliability of the data analysis, as inferred from the limited statistical accuracy of the measurement. Bayesian inference approaches can significantly help this endeavor by providing investigators with much-needed guidance under challenging decisions on experimental time management. We propose here a method based on the real-time data analysis of running experiments, which fully exploits the core strengths of Bayes theorem. The procedure is implemented in sequential steps in which the spectral measurement is adjourned by summing to it successive acquisition runs, and the spectral modeling is upgraded accordingly. At each stage, the statistical accuracy of the measurement improves, and a more grounded joint posterior distribution is drawn and used as a prior in the subsequent data acquisition stage. The gradual reduction in the model parameters’ uncertainty down to the targets set a priori by experimenters provides a quantitative “success criterion,” which helps prevent oversampling during acquisition. A similar “on the fly” data modeling, might substantially change the way large-scale facilities operate.

Publisher

IntechOpen

Reference28 articles.

1. Institut Laue Langevin (ILL) [Online]. Available from: https://www.ill.eu/

2. European Synchrotron Radiation Facility (ESRF) [Online]. Available from: https://www.esrf.fr/

3. ISIS Neutron and Muon Source (ISIS) [Online]. Available from: https://www.isis.stfc.ac.uk/Pages/home.aspx

4. Diamond Light Source (Diamond) [Online]. Available from: https://www.diamond.ac.uk/Home.html

5. Swiss Spallation Neutron Source (SINQ) [Online]. Available from: https://www.psi.ch/en/sinq

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3