Role of Arterial Pressure, Wall Stiffness, Pulse Pressure and Waveform in Arterial Wall Stress/Strain and Its Clinical Implications

Author:

K. Day Thomas

Abstract

Biomechanical stress applied to the intima of arteries has long been suspected as a factor in the initiation and localisation of atherosclerotic plaque, and it is implicated in the separation of plaque from the underlying arterial wall giving rise to the acute clinical consequences of thrombosis, dissection and embolism. The factors underlying transmural stress were investigated in-vitro using fresh porcine abdominal aortas on an experimental rig in which pulse pressure, pulse waveform, fluid viscosity, pulse rate, vessel wall compliance and systolic and diastolic blood pressure could be varied at will. Vessel wall compliance was progressively reduced by exposure of the artery to formaldehyde vapour for increased periods of time, a saline-treated artery being used as control. Centripetal transmural stress (CTS) and strain were studied by direct observation of the displacement of a compliant false intima (FI) using real-time B and M mode ultrasound, and by measuring the differential pressure between the space beneath the FI and the adjacent vessel lumen. CTS was found to be directly related to pulse pressure (r = 0.907, p < 0.001) and inversely related to vessel wall compliance. It was independently affected by ranked peak pressure waveform (R = 0.93, p < 0.01) being higher with sharp peak pressure and lower when the waveform was rounded, and it peaked in early diastole in untreated vessels, and both in diastole and peak systole in ones stiffened by formaldehyde vapour. Mean arterial pressure exerted a profound effect via its effect on vessel wall stiffness, which was found to rise 7-fold across the mean arterial pressure range 50-130 mmHg and continued to increase in a logarithmic fashion as the upper physiological range of mean arterial pressure was exceeded. There are two potential clinical implications: in mitigating the postulated biomechanical aspects atherogenesis and atherosclerotic plaque detachment, maintaining large vessel wall compliance is important, and the main factor determining this in a healthy artery is mean arterial pressure; if the arterial wall has already become stiffened as a result of disease, and in the absence of critical stenosis, the findings suggest that the appropriate therapeutic targets are modification of pulse pressure and pulse waveform profile. Simply reducing the diastolic pressure in elderly patients may be unwise if the result is a widened pulse pressure and increased transmural strain. The distribution of atheroma at points of focal mechanical strain in the vessel wall may be explicable if the stress induced by an excessive pulse pressure provokes the inflammatory changes seen in repetitive strain injury. Investigation of inflammatory signalling in the vessel wall provoked by repeated mechanical stress may represent a productive area for future research.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3