Reducing Soil Compaction from Equipment to Enhance Agricultural Sustainability

Author:

M. Boland Michael,U. Choi Young,G. Foley Daniel,S. Gobel Matthew,C. Sprague Nathan,Guevara-Ocana Santiago,A. Kuleshov Yury,M. Stwalley III Robert

Abstract

The compaction of agricultural soils cannot be solved, only managed. As a compressible media, soil travel without causing some collapse of the existing structure is impossible. If left uncorrected, farmers can see up to a 50% reduction in yield from long-term compaction. This chapter will describe the effects of soil compaction on the environment, crop quality, and economic sustainability. The base causes will be examined, along with the engineering designs for vehicles that minimize the problem. The tracks versus tires debate will be thoroughly discussed, and the advantages and disadvantages of each system will be detailed. It will be shown that although tires represent the likely current best economic option for vehicle support, the potential of tracks to reduce compaction has been fully exploited. The advantages of four-wheel drive vehicles in reducing soil compaction will be shown, along with the mitigation potential of independently driven wheels and active soil interaction feedback loops. The design of crop production tillage equipment and tillage tool working points will be explored, along with the concept of critical tillage depth. Equipment for compaction relief will also be discussed, as will the sustainable agricultural protocols of cover crops, crop rotation, and controlled traffic farming.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3