Electromagnetism of Microwave Heating

Author:

Zamorano Ulloa Rafael

Abstract

Detailed electrodynamic descriptions of the fundamental workings of microwave heating devices are presented. We stress that all results come from Maxwell equations and the boundary conditions (BC). We analyze one by one the principal components of a microwave heater; the cooking chamber, the waveguide, and the microwave sources, either klystron or magnetron. The boundary conditions at the walls of the resonant cavity and at the interface air/surface of the food are given and show how relevant the BC are to understand how the microwaves penetrate the nonconducting, electric polarizable specimen. We mention the application of microwaving waste plastics to obtain a good H2 quantity that could be used as a clean energy source for other machines. We obtained trapped stationary microwaves in the resonant cavity and traveling waves in the waveguides. We show 3D plots of the mathematical solutions and agree quite well with experimental measurements of hot/cold patterns. Simulations for cylindrical cavities are shown. The radiation processes in klystrons and magnetrons are described with some detail in terms of the accelerated electrons and their trajectories. These fields are sent to the waveguides and feed the cooking chamber. Whence, we understand how a meal or waste plastic, or an industrial sample is microwave heated.

Publisher

IntechOpen

Reference32 articles.

1. Penzias AA, Wilson RW. A measurement of excess antenna temperature at 4080 Mc/s. Astrophysical Journal Letters. 1965;142:419-421. DOI: 10.1086/148307

2. Microwave Ablation ‘Safe and Effective Technique’ at Treating Large Benign Thyroid Nodules [Internet]. 2020. Available from: https://www.healio.com/news/endocrinology/20201020/microwave-ablation-safe-and-effective-technique-at-treating-large-benign-thyroid-nodules [Accessed: 14 March 2021]

3. Cancer Research. Microwave Ablation. Lung Cancer [Internet]. UK: Cancer Research; 2021. Available from: https://www.cancerresearchuk.org/about-cancer/lung-cancer/treatment/microwave-ablation [Accessed: 14 March 2021]

4. Makul N, Rattanadecho P, Pichaicherd A. Accelerated microwave curing of concrete: A design and performance related experiments. Cement and Concrete Composites. 2017;i3:415. DOI: 10.1016/j.cemconcomp.2017.08.007

5. Halim SA, Swithenbank J. Simulation study of parameters influencing microwave heating of biomass. Journal of the Energy Institute. 2019;92:1191-1212. DOI: 10.1016/j.joei.2018.05.010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3