Advances in Derivative Voltammetry - A Search for Diagnostic Criteria of Several Electrochemical Reaction Mechanisms

Author:

Kim Myung-Hoon

Abstract

New methods for analysis of current-potential curves in terms of their derivatives are presented for studying various types of electrode processes – such as simple electron transfer reactions (reversible, quasi-reversible, and irreversible electron transfer) as well as chemically coupled electron transfer reactions along with a diagnostic scheme for differentiating these various types of electrochemical reaction mechanisms. Expressions for first- and higher order derivatives are derived from theoretical analytical solutions for currents for the different types of electrode mechanisms. The derivative curves are analyzed in terms of various parameters which characterize peak shape or peak symmetry with an emphasis on the second derivatives with well-defined anodic and cathodic peaks. Second derivatives can yield, in a simpler manner, the symmetry ratios; i.e., a ratio of anodic to cathodic peak-currents (ipa/ipc), and a ratio of anodic to cathodic peak-widths (Wpa/wpc) and a ratio of anodic to cathodic peak potential differences (ΔEpa/ΔEpc) or a peak separation (Epa-Epc) are evaluated, and these ratio can be related to kinetic parameters associated with a particular types of electrode mechanisms. Peaks are found to be symmetrical for a simple reversible electron transfer process (Er). However, peaks become asymmetrical when the electron transfer become slower (namely, irreversible, Eirr) or e− transfer reaction is coupled with homogeneous chemical reactions such as a prior reaction (CEr) or a follower-up reaction (ECr). From measured values of such symmetry ratios above, one can gain insight to the nature of the electrochemical systems enabling us to determine various kinetic parameters associated with a system. A diagnostic criteria for assigning an electrode mechanism is devised based on the values of asymmetry parameters measured, which are unity for a simple reversible electron transfer process.

Publisher

IntechOpen

Reference73 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3