Abstract
In this chapter, we discuss the magnetic solitons achieved in atomic spinor Bose-Einstein condensates (BECs) confined within optical lattice. Spinor BECs at each lattice site behave like spin magnets and can interact with each other through the static magnetic dipole-dipole interaction (MDDI), due to which the magnetic soliton may exist in blue-detuned optical lattice. By imposing an external laser field into the lattice or loading atoms in a red-detuned optical lattice, the light-induced dipole-dipole interaction (LDDI) can produce new magnetic solitons. The long-range couplings induced by the MDDI and ODDI play a dominant role in the spin dynamics in an optical lattice. Compared with spin chain in solid material, the nearest-neighbor approximation, next-nearest-neighbor approximation, and long-range case are discussed, respectively.