Integrating Resilience in Time-based Dependency Analysis: A Large-Scale Case Study for Urban Critical Infrastructures

Author:

Rosato Vittorio,Di Pietro Antonio,Kotzanikolaou Panayiotis,Stergiopoulos George,Smedile Giulio

Abstract

As critical systems shall withstand different types of perturbations affecting their functionalities and their service level, resilience is a very important requirement. Especially in an urban critical infrastructures where the occurrence of natural events may influence the state of other dependent infrastructures from various different sectors, the overall resilience of such infrastructures against large scale failures is even more important. When a perturbation occurs in a system, the quality (level) of the service provided by the affected system will be reduced and a recovery phase will be triggered to restore the system to its normal operation level. According to the implemented recovery controls, the restoration phase may follow a different growth model. This paper extends a previous time-based dependency risk analysis methodology by integrating and assessing the effect of recovery controls. The main goal is to dynamically assess the evolution of recovery over time, in order to identify how the expected recovery plans will eventually affect the overall risk of the critical paths. The proposed recovery-aware time-based dependency analysis methodology was integrated into the CIPCast Decision Support System that enables risk forecast due to natural events to identify vulnerable and disrupted assets (e.g., electric substations, telecommunication components) and measure the expected risk paths. Thus, CIPCast can be valuable to Critical Infrastructure Operators and other Emergency Managers involved in a crisis assessment to evaluate the effect of natural and anthropic threats affecting critical assets and plan proper countermeasures to reduce the overall risk of degradation of services. The proposed methodology is evaluated in a real scenario, which utilizes several infrastructures and Points of Interest of the city of Rome.

Publisher

IntechOpen

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review article: Current approaches and critical issues in multi-risk recovery planning of urban areas exposed to natural hazards;Natural Hazards and Earth System Sciences;2024-01-17

2. An Open-Data-Based Methodology for the Creation of a Graph of Critical Infrastructure Dependencies at an Urban Scale;Critical Infrastructure - Modern Approach and New Developments [Working Title];2023-11-16

3. Defensive strategy optimization of consecutive-k-out-of-n systems under deterministic external risks;Eksploatacja i Niezawodność – Maintenance and Reliability;2022-06-30

4. Seismic Risk Simulations of a Water Distribution Network in Southern Italy;Computational Science and Its Applications – ICCSA 2021;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3