Abstract
In this chapter, the Ferroelectric, Piezoelectric and Dielectric behavior of novel polymer/ceramic nano-composite (PCC) based on ferroelectric polymer [polyvinyledene fluoride (PVDF)] & nano Barium Titanate (n-BaTiO3) with different volume fractions of n-BaTiO3 (fBaTiO3), prepared through the novel cold pressing method has been discussed. The ferroelectric parameters of PCC are attributed to spherulites of PVDF, the increase of n-BaTiO3 and the ordered homogenous structure due to the novel cold pressing. The clustering of ceramic fillers is responsible for randomization of the structures of these composite ferroelectrics for some samples, leading to decrease of electrical polarisations. The piezoelectricity and piezoelectric coefficients of these composites ferroelectrics, increases with increase of ceramic filer content and remains constant beyond a certain ratio. However, the dielectric properties increase linearly as a function of ceramic content due to increase of interfaces/interfacial polarisations. The enhancement of effective dielectric constant (ɛeff) is attributed to the large interfacial polarization arising due to the charge storage at the spherulites of PVDF and at the polymer/filler interfaces of PCC and have been explained on the basis of sum effect with the help of the standard models. The achieved lower loss tangent (Tan δ) for the PCC as compared to the polymer/metal composites (PMC) is attributed to the highly insulating nature of PVDF & semiconducting n-BaTiO3. The thermal stability of the composites is also maintained due to the higher melting temperature (170°C) of PVDF. The cold pressed PCC based on PVDF are going to act as better polymer ferroelectric/dielectrics for memory and electrical energy storage applications.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Piezoelectricity and Piezoelectric Materials;Mechanics and Adaptronics;2024
2. Ferroelectric Polymer Dielectrics;Percolation, Scaling, and Relaxation in Polymer Dielectrics;2023
3. Introduction;Percolation, Scaling, and Relaxation in Polymer Dielectrics;2023