Innovative Hybrid Materials with Improved Tensile Strength Obtained by 3D Printing

Author:

Mioara Piticescu Roxana,Madalina Cursaru Laura,Negroiu Gabriela,Florentina Ciobota Cristina,Neagoe Ciprian,Safranchik Daniel

Abstract

Barium titanate (BT) and barium strontium titanate (BST) are one of the most studied ferroelectric materials with excellent piezoelectric properties, which can be used to stimulate bone formation by applying an electrical field. It is known that this ceramic is biocompatible and can be used for medical applications. New hybrid materials based on BT and collagen and BST and collagen, with potential applications in bone reconstruction, are presented, emphasizing the potential of fabricating 3D structures by integrating hydrothermal synthesis with additive manufacturing. Designing such structures may take advantage of rheological characterization at single-molecule level for some elastic biopolymers like titin and collagen and their molecular dissection into structural motifs that independently contribute to the protein viscoelasticity. Atomic force spectroscopy measurements on synthetic polypeptides showed that a polypeptide chain containing Ig domain modules is protected against rupture at high stretch by Ig domain unfolding, an important mechanism for stress relaxation in titin molecules. This property may be exploited to enhance the tensile strength of a 3D structure by adding specific synthetic polypeptides to the composition of the printing paste.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3