Functional Mechanism of Proton Pump-Type Rhodopsins Found in Various Microorganisms as a Potential Effective Tool in Optogenetics

Author:

Tamogami Jun,Kikukawa Takashi

Abstract

Microbial rhodopsins, which are photoreceptive membrane proteins consisting of seven α-helical structural apoproteins (opsin) and a covalently attached retinal chromophore, are one of the most frequently used optogenetic tools. Since the first success of neuronal activation by channelrhodopsin, various microbial rhodopsins functioning as ion channels or pumps have been applied to optogenetics. The use of light-driven ion pumps to generate large negative membrane potentials allows the silencing of neural activity. Although anion-conductive channelrhodopsins have been recently discovered, light-driven outward H+-pumping rhodopsins, which can generate a larger photoinduced current than a light-driven inward Cl−-pump halorhodopsin, must be more efficient tools for this purpose and have been often utilized for optogenetics. There are abundant proton pumps in the microbial world, providing numerous candidates for potential practical optogenetic instruments. In addition, their distinctive features (that is, being accompanied by photoinduced intracellular pH changes) could enable expansion of this technique to versatile applications. Thus, intensive investigation of the molecular mechanisms of various microbial H+-pumps may be useful for the exploration of more potent tools and the creation of effectively designed mutants. In this chapter, we focus on the functional mechanism of microbial H+-pumping rhodopsins. Further, we describe the future prospects of these rhodopsins for optogenetic applications.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3