3D Point Cloud-Based Tree Canopy Visualization for a Smart Deployment of Mobile Communication Systems

Author:

Egi Yunus,Eyceyurt Engin

Abstract

Mobile communication is one of the most important parameters of smart cities in terms of maintaining connectivity and interaction between humans and smart systems. However, In the deployment process of Mobile Communication Systems (MCS), Radio Frequency (RF) engineers use location depended empirical Signal Strength Path Loss (SSPL) models ending up with poor signal strength and slow data connection. This is due to the fact that empirical propagation models usually are restrained by the environment and do not implement state of the art technologies, including Unmanned Aerial Vehicles (UAV), Light Detection and Ranging (LiDAR), Image Processing, and Machine Learning to increase efficiency. Terrains involving buildings, hills, trees, mountains, and human-made structures are considered irregular terrains by telecommunication engineers. Irregular terrains, specifically trees, significantly affect MCS’s efficiency because of their complex pattern resulting in erroneous signal fading via multi-path reflection and absorption. Therefore, a virtual 3D environment is required to extract the required 3D terrain pattern and elevation data from the environment. Once this data is processed in the machine learning algorithm, an adaptive propagation model can be formed and can significantly improve SSPL prediction accuracy for MCS. This chapter presents 3D point cloud visualization via sensor fusion and 2D image color classification techniques, which lead to a novel propagation model for the smart deployment of MCS. The proposed system’s main contribution is to develop an intelligent environment that eliminates limitations and minimizes related signal fading prediction errors. In addition, having better connectivity and efficiency will resolve the communication problem of smart cities. The chapter also provides a case study that significantly outperforms other empirical models with an accuracy of 95.4%.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3