Aspergillus-Human Interactions: From the Environment to Clinical Significance

Author:

Thammahong Arsa

Abstract

Aspergillus species are ubiquitous fungi found in the environment worldwide. The most common Aspergillus species causing diseases in humans are A. fumigatus, A. flavus, A. niger, and A. terreus. However, species causing human infections are also depending on human immune status. Host immune status and previous underlying diseases are important factors leading to different clinical manifestations and different disease spectra of Aspergillus infections. The most severe form of Aspergillus infections is invasive aspergillosis in human tissue, especially invasive pulmonary aspergillosis (IPA), which has high morbidity and mortality in immunocompromised patients. ICU patients with influenza infections and COVID-19 infections are recently risk factors of invasive pulmonary aspergillosis. New diagnostic criteria include galactomannan antigen assays, nucleic acid amplification assays, and lateral flow assays for early and accurate diagnosis. Voriconazole and the newest azole, isavuconazole, are antifungals of choice in IPA. Nevertheless, azole-resistant Aspergillus strains are increasing throughout the world. The etiology and spreading of azole-resistant Aspergillus strains may originate from the widespread use of fungicides in agriculture, leading to the selective pressure of azole-resistant strains. Therefore, there is a necessity to screen Aspergillus antifungal susceptibility patterns for choosing an appropriate antifungal agent to treat these invasive infections. In addition, mutations in an ergosterol-producing enzyme, i.e., lanosterol 14-α demethylase, could lead to azole-resistant strains. As a result, the detection of these mutations would predict the resistance to azole agents. Although many novel azole agents have been developed for invasive Aspergillus infections, the rate of novel antifungal discovery is still limited. Therefore, better diagnostic criteria and extensive antifungal resistant Aspergillus screening would guide us to better manage invasive Aspergillus infections with our existing limited resources.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3