Enhanced Hybrid Privacy Preserving Data Mining Technique

Author:

Prasanthi Kundeti Naga,Sekhara Rao MVP Chandra,Sree Chekuri Sudha,Seshu Babu Pallapothu

Abstract

At present, almost every domain is handling large volumes of data even as storage device capacities increase. Amidst humongous data volumes, Data mining applications help find useful patterns that can be used to drive business growth, improved services, better health care facilities etc. The accumulated data can be exploted for identity theft, fake credit/debit card transactions, etc. In such scenarios, data mining techniques that provide privacy are helpful. Though privacy-preserving data mining techniques like randomization, perturbation, anonymization etc., provide privacy, but when applied separately, they fail to be effective. Hence, this chapter suggests an Enhanced Hybrid Privacy Preserving Data Mining (EHPPDM) technique by combining them. The proposed technique provides more privacy of data than existing techniques while providing better classification accuracy as well as evidenced by our experimental results.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3