Affiliation:
1. Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, P.R. China
Abstract
Global localization problem is one of the classical and important problems in mobile robot. In this paper, we present an approach to solve robot global localization in indoor environments with grid map. It combines Hough Scan Matching (HSM) and grid localization method to get the initial knowledge of robot's pose quickly. For pose tracking, a scan matching technique called Iterative Closest Point (ICP) is used to amend the robot motion model, this can drastically decreases the uncertainty about the robot's pose in prediction step. Then accurate proposal distribution taking into account recent observation is introduced into particle filters to recover the best estimate of robot trajectories, which seriously reduces number of particles for pose tracking. The proposed approach can globally localize mobile robot fast and accurately. Experiment results carried out with robot data in indoor environments demonstrates the effectiveness of the proposed approach.
Subject
Artificial Intelligence,Computer Science Applications,Software
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献