Author:
Li Ming,Meng Xiangwei,Guan Lihao,Kim Youngsuk,Kim Sukwon
Abstract
We aimed to investigate the impact of isolated static stretching (4 sets of 30 seconds) and its combined form with 10 repetitive drop jumps on lower limb performance during squat jumps at different knee joint starting angles (60°, 90°, and 120°). Thirteen participants completed three randomly ordered experimental visits, each including a standardized warm-up and squat jumps at three angles, apart from the intervention or control. Information was gathered through a three-dimensional movement tracking system, electromyography system, and force platform. The electromyography data underwent wavelet analysis to compute the energy values across the four wavelet frequency bands. The average power (Pavg), peak power (Ppeak), peak ground reaction force (GRFpeak), peak center of mass velocity (Vpeak), and force-velocity relationship at peak power (SFv) were extracted from the force and velocity-time data. The results revealed no significant influence of isolated static stretching, or its combined form with drop jumps, on the energy values across the frequency bands of the gastrocnemius, biceps femoris and rectus femoris, or the Pavg or Ppeak (P > 0.05). However, at 120°, static stretching reduced the GRFpeak (P = 0.001, d = 0.86) and SFv (P < 0.001, d = 1.12), and increased the Vpeak (P = 0.001, d = 0.5). The GRFpeak, Pavg, Ppeak, and SFv increased with an increase in the joint angle (P < 0.05), whereas the Vpeak decreased (P < 0.05). These findings suggest that static stretching does not diminish power output during squat jumps at the three angles; however, it alters GRFpeak, Vpeak, and the relative contributions of force and velocity to peak power at 120°, which can be eliminated by post-activation performance enhancement. Moreover, compared to 60° and 90°, 120° was more favorable for power and peak force output.
Publisher
Journal of Sports Science and Medicine
Subject
Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献